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1. Introduction

The interplay between supergravities and their associated Kac-Moody algebras has received

a great amount of attention over the years.

An important first step was the discovery of hidden symmetries [1, 2] upon reduction to

lower dimensions. In three dimensions, one obtains gravity coupled to a scalar coset G/H.

Further reduction to two dimensions leads to a symmetry which is the affine extension

G+, analogous to the Geroch group SL(2, R)+ for pure gravity [3 – 5]. In one dimension

the relevant symmetry is expected to be the over extension G++ [3, 6]. The latter has

mainly been considered in the context of eleven-dimensional supergravity near space-like

singularities and E10 = E++
8 [7, 8], see [9] for IIB. In this framework, space-time is ex-

pected to arise from the dynamics of a σ-model in one dimension. In addition, there is a

conceptually different approach based on the non-linear realisation of (the conformal group

together with) the very extension1 G+++, like E11 = E+++
8 for the d = 11 theory [11, 12]

as well as the IIB theory [13].

Very recently, the relation between the non-propagating degrees of freedom of super-

gravity, closure of the supersymmetry algebra and the corresponding Kac-Moody algebras

has come into focus. In particular, in [14, 15] it was shown how all the mass deforma-

tions and possible gaugings of maximal supergravity in d ≥ 3 dimensions,2 or rather the

(d−1)-forms dual to these constants, correspond to specific generators in the very extended

algebra E11. An exception must be made here for gaugings that violate the action principle,

as will also be discussed in section 4. In addition, E11 makes predictions for the possible

multiplets for the d-forms on which the superalgebra can be realised [9, 17]. Although these

1The simultaneous non-linear realization of the affine group and the conformal group in four dimensions

reproduces the Einstein equation of general relativity [10].
2It would be interesting to see if the recent results on gaugings in d = 2 of [16] can be incorporated in

E11 as well.
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forms do not carry any propagating degrees of freedom, they are part of the field content

of the theory and play a crucial role in the story of space-time filling branes [18, 19]. The

possible d-forms that are allowed by the superalgebra have been explicitly calculated in

the cases of IIB [20] and IIA [21] and found to agree with the E11 predictions.

The philosophy underlying the recent papers [14, 15] can be summarised as follows.

Given any very extended algebra, one can decompose its adjoint representation into repre-

sentations of a Lie subalgebra SL(d) (the ’gravity line’). These are labelled by their level

l in the Kac-Moody algebra. Up to some level l, the resulting generators are interpreted

as the d-dimensional space-time fields of the corresponding supergravity. Generators at

higher level are interpreted as space-time fields with more than d indices, and these may

correspond to dual formulations of lower-level fields or non-propagating degrees of free-

dom [22]. Given this dictionary, one can read off the possible (d − 1)- and d-forms for

any very extended algebra and compare this to the closure of the supersymmetry algebra

on such forms. This extends the results of [23] for propagating degrees of freedom to the

non-propagating (d − 1)- and d-forms.

The previous ideas have also been applied to less than very extended algebras. For

example, the propagating degrees of freedom of supergravity theories can likewise be ob-

tained from the affinely extended G+, see e.g. [24] for a detailed account. In addition, the

overextended algebras G++ can contain generators corresponding to the (d− 1)-forms. An

example in d = 10 for the overextended E10 can be found in [25]. However, only the very

extended G+++ may capture all non-propagating degrees of freedom. Roughly speaking,

the less than very extended algebras seem to be ’too small’ to contain both (d − 1)- and

d-forms.

An interesting question is whether it is possible to extend the striking results for E11

to cases based on other very extended algebras. In other words, do other very extended

algebras also predict the correct (d−1)- and d-forms for the associated supergravity theory

in d dimensions? This will necessarily be in the context of supergravities with less than

maximal supersymmetry (as maximal supergravities are associated to E11), while the very

extended algebras will be based on other Lie algebras G than the most exceptional E8.

Hence all other cases are far less restricted by symmetries. An obvious and worthwhile

question is whether the correspondence found for E11 also holds for these less symmetric

situations and if not, what the requirements are for it to hold or what the reasons of its

failure are.

In this note we address this question in the context of minimal N = 2 pure supergravity

in d = 5. This theory is similar to d = 11 supergravity in a number of respects, see e.g. [26]:

for instance, its bosonic field content only contains a metric and a (d − 2)/3-form A with

Chern-Simons term A ∧ dA ∧ dA. Clear differences are that it has only 8 instead of 32

supercharges, and it reduces to the coset G2/SO(4) in three dimensions, see e.g. [27]. Hence

the relevant very extended algebra is G+++
2 instead of E11. It is of interest to see whether

this affects the correspondence between the non-propagating degrees of freedom and the

very extended algebra. To this end we first consider the supersymmetry algebra of this

theory and see on which (d − 1) and d-forms this can be realised. It turns out that the

allowed (d − 1)-forms transform as a triplet under the SU(2) R-symmetry. Afterwards we
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compare this with the predictions from very extended G2 and finish with a discussion of

our results.

2. Minimal supergravity in d = 5

We use the conventions of [28, 29]. Our metric is mostly plus. Curved (flat) indices are

denoted by Greek (Latin) letters µ, ν . . . (m,n, . . .). The index i = 1, 2 labels the two

symplectic anti-commuting fermions and is raised and lowered according to ψi
µ = εijψµj

and ψµj = ψi
µεij with ε12 = ε12 = 1. We restrict ourselves to quadratic terms in fermions.

2.1 The ungauged case

The graviton multiplet for minimal five-dimensional supergravity consists of the Fünfbein

eµ
a, a symplectic Majorana gravitino ψµi and a vector Aµ. The dynamics is governed by

the Lagrangian

L =
√

g

[

−1

2
R − 1

4
FµνFµν − 1

2
ψ̄µ

iΓµνρDνψρi −
3

8
√

6
iψ̄µ

i (Γµνρσ + 2gµνgρσ)Fνρψσi

]

+
1

6
√

6
εµνρσλAµFνρFσλ , (2.1)

where the field strength is given by Fµν = 2∂[µAν] and Dµ is the covariant derivative with

respect to general coordinate and Lorentz transformations.

The action is invariant under ungauged supersymmetry transformations given by

δeµ
m =

1

2
ǭiΓmψµi ,

δψµi = Dµǫi +
1

4
√

6
i (Γµ

νρ − 4δµ
νΓρ) Fνρǫi ,

δAµ = −
√

6

4
iǭiψµi , (2.2)

The commutator of two supersymmetry transformations generates the supersymmetry al-

gebra

[δ1, δ2] = δgct + δLorentz + δsusy + δgauge + δL , (2.3)

with the following parameters for the general coordinate, local Lorentz, supersymmetry

and gauge transformations:3

ξµ =
1

2
ǭi
1Γ

µǫ2i ,

Λmn = ξνων
mn +

1

4
√

6
iǭi

1(Γ
mnpq + 4gmpgnq)Fpqǫ2i ,

ηi = −ξµψµi ,

λ(0) = −
√

6

4
iǭi

1ǫ2i − ξνAν . (2.4)

3We differ with respect to [29] in the sign of the third term of the Lorentz transformation.
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Here we use the following conventions:

δgctAµ = −ξν∂νAµ − Aν∂µξν ,

δLorentzeµ
m = −Λm

neµ
n ,

δgaugeAµ = −∂µλ(0) , (2.5)

with the obvious generalisation of general coordinate transformations to other forms.

The last term in (2.3) is a possible first-order field equation that can occur when

closing the algebra. This is a common feature for the fermions, on which supersymmetry

only closes modulo their equations of motion. In the following we will also find first-order

constraints when realising the supersymmetry algebra on tensors of higher rank.

In addition to the local symmetries discussed above, the theory also has a global SU(2)

R-symmetry. This symmetry only acts on the gravitino (in the fundamental representation)

while the metric and vector are invariant under it.

We now would like to see whether one can realise the supersymmetry algebra on other

fields as well. We start with a tensor and make the following Ansätze for the transformation

under supersymmetry:

δBµν = b1ǭ
iΓ[µψν]i + b2A[µδAν] . (2.6)

One finds that the supersymmetry algebra closes provided b1 = 3
4b2 = −1

2

√
6 and up to

both the gauge transformations

δgaugeBµν = −2∂[µλ
(1)
ν] − 1

3

√
6λ(0)Fµν , λ(1)

ν = −Bνσξσ +
1

4

√
6ǭi

1Γνǫ2i −
1

2
iǭi

1ǫ2iAν ,

(2.7)

and the duality relation, or first-order field equation,

δLBµν = −
(

Hµνρ −
1

2

√
−gεµνρσλF σλ

)

ξρ , Hµνρ = 3∂[µBνρ] −
√

6A[µFνρ] . (2.8)

Since this has to vanish for all supersymmetry transformations we have to require the

equation in brackets to vanish. Indeed, from this duality relation follows the field equation

for the vector

∇µFµν = − 1

2
√

6

√
−gενµ1...µ4F

µ1µ2Fµ3µ4 , (2.9)

which can also be derived from the action (2.1). Hence we conclude that it is possible to

realise supersymmetry on a tensor, provided it is the Hodge dual to the vector. Summing

up, the supersymmetry algebra only closes up to the duality relation (2.8), which can be

seen as a bosonic first-order field equation.

Turning to higher-rank anti-symmetric tensors, it can be seen that the algebra only

allows for supersymmetry transformations of the form ǭiΓ[µi···µn
ψj

µn+1] which are anti-

symmetric in i and j when n = 0, 1 and symmetric when n = 2, 3 (mod 4). Therefore

– 4 –
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we make the following Ansätze:

δCij
µνρ = ic1ǭ

(iΓ[µνψ
j)
ρ] ,

δDij
µνρσ = d1ǭ

(iΓ[µνρψ
j)
σ] + d2A[µδCij

νρσ] ,

δEµνρστ = ie1ǭ
iΓ[µνρσψτ ]i + e2A[µBνρδBστ ] , (2.10)

where the first two lines are symmetric in i and j. Note that we could have included more

terms, e.g. Cij ∧ δA in δDij , but these can be absorbed into a redefinition of Dij. The

above Ansätze are the most general modulo such redefinitions. In addition we can impose

the symplectic reality conditions

Cij − C∗
ij = Dij − D∗

ij = 0 . (2.11)

It can be verified that these conditions are invariant under the above supersymmetry trans-

formations and under the SU(2) R-symmetry. Under the latter these higher-rank tensors

therefore transform as triplets.4 Note that the original bosonic fields (i.e. the metric and the

vector) are invariant under the SU(2) symmetry; until the introduction of the higher-rank

tensors this is a symmetry that only acts on the fermionic sector of the theory.

The closure of the supersymmetry algebra on these higher-rank tensors requires the

following constants:

c1d2 = −
√

6d1 , e2 = 0 , (2.12)

and associated gauge transformations with parameters:

δgaugeC
ij
µνρ = −3∂[µλ

(2)ij
νρ]

, λ(2)ij
µν = −Cij

µνρξ
ρ +

1

3
ic1ǭ

(i
1 Γµνǫ

j)
2 ,

δgaugeD
ij
µνρσ = −4∂[µλ

(3)ij
νρσ] , λ(3)ij

µνρ = −Dij
µνρσξσ − 1

4
d1

(

ǭ
(i
1 Γµνρǫ

j)
2 −

√
6iA[µǭ

(i
1 Γνρ]ǫ

j)
2

)

,

δgaugeEµνρστ = −5∂[µλ
(4)
νρστ ] , λ(4)

µνρσ = −Eµνρστ ξτ +
1

5
ie1ǭ

i
1Γµνρσǫ2i . (2.13)

In addition, on the right hand side of the supersymmetry algebra appear the following

first-order field equations for the three- and four-forms:

δLCij
µνρ = −

(

4∂[µCij

νρσ]

)

ξσ , δLDij
µνρσ = −

(

5∂[µDij

νρστ ]

)

ξτ , (2.14)

which imply that their curvatures vanish, i.e. these potentials are closed. In combination

with their gauge transformations this implies that they do not carry any local degrees of

freedom.5 Indeed, they can only be relevant in topologically non-trivial manifolds, e.g. when

they are proportional to volume forms of non-contractible cycles.

4In the first preprint version of this paper we only considered the trace of these symmetric representations.

This is not SU(2) covariant, as was correctly pointed out afterwards in [30]. However, the introduction of

the triplet representations above does give an SU(2)-covariant formulation.
5A similar phenomenon, gauge vectors with vanishing field strengths and no local degrees of freedom,

was encountered in [16] in the context of d = 2 supergravity.
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A complementary conclusion can be reached for the five-form E. Its supersymmetry

transformation is proportional to that of the Levi-Civita tensor, which is

δ(
√
−gεµνρστ ) = −5

2
iǭiΓ[µνρσψτ ]i , (2.15)

and hence E is not an independent field but rather composed of the metric, i.e. it it

proportional to the volume form of space-time: E = −2
5e1ε. Indeed, with this identification

λ(4) vanishes automatically, consistent with the absence of a gauge transformation for the

Levi-Civita tensor.

Hence there are no local degrees of freedom associated to the potentials Cij and Dij

and there is no independent five-form potential E. It is interesting to note that the com-

mutator of two susy transformations on these potentials turns out to be given by a gauge

transformation:

[δ1, δ2]C
ij
µνρ = −3∂[µλ̃

(2)ij
νρ] , λ̃(2)ij

µν =
1

3
ic1ǭ

(i
1 Γµνǫ

j)
2 ,

[δ1, δ2]D
ij
µνρσ = −4∂[µλ̃

(3)ij
νρσ] , λ̃(3)ij

µνρ = −1

4
d1

(

ǭ
(i
1 Γµνρǫ

j)
2 −

√
6iA[µǭ

(i
1 Γνρ]ǫ

j)
2

)

,

[δ1, δ2]Eµνρστ = −5∂[µλ̃
(4)
νρστ ] , λ̃(4)

µνρσ =
1

5
ie1ǭ

i
1Γµνρσǫ2i . (2.16)

One finds that the commutator of supersymmetry does not lead to any terms involving

the parameter ξµ of general coordinate transformations. These terms cancel separately

on the right hand side of the supersymmetry algebra (2.3) due to the contribution (2.14).

Hence the supersymmetry algebra (2.3) is realised in a rather trivial way on these poten-

tials. Indeed, due to the above commutators, setting Cij and Dij to zero by the gauge

transformations (2.13) is consistent with supersymmetry.

The presence of the triplets of three- and four-forms, on which supersymmetry can be

realised provided they have vanishing curvature, may have come as a surprise at this point.

In the next subsection we will see however that they are necessary for the inclusion of a

gauge coupling constant.

2.2 The gauged case

We now consider the gauging of a U(1) subgroup of the SU(2) R-symmetry group, with

coupling constant6 g [29]. The action for this gauged supergravity is

L =
√

g

[

− 1

2
R − 1

4
FµνFµν − 1

2
ψ̄µ

iΓµνρ(Dνψρi − gAνδijψ
j
ρ)+

− 3

8
√

6
iψ̄µ

i(Γµνρσ + 2gµνgρσ)Fνρψσi −
1

4

√
6igψ̄i

µΓµνψj
νδij + 4g2

]

+
1

6
√

6
εµνρσλAµFνρFσλ , (2.17)

6Here we have chosen a specific embedding of the gauged U(1) in SU(2) without loss of generality. To

describe the other embeddings one should replace gδij by gij , which is symmetric and subject to a symplectic

reality condition like (2.11).
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where the field strength is still given by Fµν = 2∂[µAν]. These are invariant under the

following supersymmetry variations:

δeµ
m =

1

2
ǭiΓmψµi ,

δψµi = Dµǫi +
1

4
√

6
i(Γµ

νρ − 4δµ
νΓρ)Fνρǫi − gAµδijǫ

j − 1√
6
igΓµδijǫ

j ,

δAµ = −
√

6

4
iǭiψµi . (2.18)

Note that there are only corrections to the supersymmetry variation of the fermion and

not to those of the metric and vector.

It turns out that the supersymmetry variations of all higher-rank potentials are un-

changed as well, i.e. equal to their ungauged expressions, just like the other bosons in (2.18).

The only differences appear on the right hand side of the supersymmetry algebra for the

potentials B and Dij: the two-form gauge transformation becomes

δgaugeBµν = −2∂[µλ
(1)
ν] − 1

3

√
6λ(0)Fµν + βgλ(2)ij

µν δij , (2.19)

where β =
√

6b1/c1 and the duality relations (or first-order field equations) for B and Dij

become

δLBµν = −
(

Hµνρ − βgCij
µνρδij −

1

2

√
−gεµνρσλF σλ

)

ξρ ,

δLDij
µνρσ = −

(

5∂[µDij

νρστ ] −
1

2
γgδijEµνρστ

)

ξτ , (2.20)

where γ = −5
3

√
6d1/e1.

Note that the trace part of the field strength of the four-forms potential Dij is non-

vanishing in the gauged theory. This implies that this potential, unlike in the ungauged

case, can no longer be gauged away locally. Recalling the identification of E with the

Levi-Civita tensor, the duality relation for the trace of the four-form Dij implies that its

field strength is Hodge dual to the mass parameter or gauge coupling constant g. This is

analogous to the identification of e.g. the field strength of the nine-form in IIA supergrav-

ity [31, 32] with Romans’ mass parameter [33]. Hence the presence of the four-forms in

the supersymmetry algebra is directly related to the possibility of gauging the U(1) group.

This explains why Dij also appeared in the ungauged case. Indeed, its appearance there

can be seen as a necessary condition for and hence a prediction of the existence of gauged

supergravity.

In the same spirit, the gauging explains the presence of the three-forms Cij in the su-

peralgebra. Their gauge transformations are necessary to be able to realise supersymmetry

on the tensor in the gauged case, since the latter transforms under the former. Indeed, the

tensor B is pure gauge due to the λ(2)ij term in its gauge transformation. When gauging

away B, the associated degrees of freedom are carried by the trace of Cij. It has a van-

ishing field strength but its gauge freedom has been fixed, giving rise to the same number

of local degrees of freedom as a two-form gauge potential. Alternatively, we could locally

– 7 –
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Figure 1: The extended Dynkin diagram of G+++

2 with its horizontal A4 subalgebra.

choose to set Cij to zero, but in order to preserve this gauge choice under the commutator

of supersymmetry we need a compensating transformation λ̃(2)ij given by (2.16). Also note

that, although the field strength H contains a term gCijδij , this does does not modify the

field equation (2.9), in accordance with the above action for the gauged case.

Even though Cij still has vanishing curvature and the commutator of supersymmetry

acts as a total derivative on it, the three-forms turns out to play a crucial role in dualising

the vector into a tensor when g 6= 0. Indeed, it is impossible to realise supersymmetry on the

tensor without including Cij. This is in contrast to the ungauged case, where it is consistent

to consider only potentials up to a certain rank. In the gauged case such a hierarchy is

no longer present: a higher-rank potential can be necessary to realise supersymmetry on a

potential of lower rank, as we have found for B and Cij.

Summarising, we have found in this subsection that the presence of Cij and Dij in

the supersymmetry algebra are both related to the gauging: the four-forms predict the

possibility to include a gauging, while the three-forms are necessary to dualise the vector

in the gauged case. The latter seems to be a novel mechanism that we have not encountered

in the literature.7

3. Very-extended G2

In this section we will recapitulate the predictions from very extended G2 and compare

against the findings from the supersymmetry algebra.

Given a Kac-Moody algebra which is the very extension of some Lie algebra, one

can decompose its adjoint representation into representations of a Lie subalgebra An (the

’gravity line’). These are labelled by their level l in the Kac-Moody algebra and can be

interpreted to correspond with fields in d = n + 1 dimensions. This has been explained in

e.g. [23] and references therein, where more details can be found.

The relevant very extended algebra in the present case is G+++
2 , whose extended

Dynkin diagram is given in the figure. Its decomposition in A4 representations has been

given in [23], from which we copy the relevant table. Note that there is no internal SU(2)

symmetry in addition to the space-time A4 symmetry, and hence all ensuing representations

will be singlets of SU(2).

The space-time field interpretation for the first four entries is as graviton, vector and

tensor, respectively. These agree with our results in the previous section, where we found

7For instance, in the formalism of [34] for gauged d = 5 maximal supergravities, dual tensors are also

introduced and the supersymmetry algebra only closes up to first-order duality relations for them, but there

are no terms like gλ(2) in their gauge transformations.
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l A4 weight G+++
2 element α α2 ht(α) µ Interpretation

0 [1,0,0,1] (1,1,1,1,0) 2 4 1 graviton

1 [0,0,0,1] (0,0,0,0,1) 2 1 1 vector A

2 [0,0,1,0] (0,0,0,1,2) 2 3 1 tensor B

3 [0,0,1,1] (0,0,0,1,3) 6 4 1 dual graviton

3 [0,1,0,0] (0,0,1,2,3) 0 6 0

4 [0,1,0,1] (0,0,1,2,4) 2 7 1 mixed

4 [1,0,0,0] (0,1,2,3,4) -4 10 0

5 [0,1,1,0] (0,0,1,3,5) 2 9 1 mixed

5 [1,0,0,1] (0,1,2,3,5) -4 11 1 mixed

5 [0,0,0,0] (1,2,3,4,5) -10 15 0

Table 1: The first levels of the decomposition of G+++

2 with respect to A4. All representations

are SU(2) singlets.

that one can realise supersymmetry on eµ
a, Aµ and Bµν . The fourth should correspond

to the dual graviton, which we did not consider since it has mixed symmetries and we

restrict ourselves to anti-symmetric tensors. The remaining entries either have mixed

symmetries or are absent (with vanishing multiplicity µ). At higher levels l ≥ 6 there are

only representations with more than six space-time indices.

Note in particular that there are no four-form potentials8 predicted by very extended

G2. This is in clear contradistinction to the results from the supersymmetry algebra, which

does allow for a triplet of four-forms whose field strength is dual to the gauge coupling

constant. Hence it emerges that very extended G2 should be associated to ungauged d = 5

minimal supergravity and not to the corresponding gauged supergravity. In addition to

the absence of the four-forms, there is also no five-form predicted by very extended G2.

This agrees with both the ungauged and the gauged supersymmetry algebra.

Given that G+++
2 is associated to the ungauged case, the vector can be identified as a

raising operator from which the entire bosonic gauge algebra of the ungauged theory can be

generated. To see this one must first make the following redefinition of the gauge algebra.

As things stand, the gauge transformation (2.7) is Abelian and non-local, due to the term

proportional to F . One can redefine the gauge parameter by λ(1)′ = λ(1) + 1
3

√
6λ(0)A to

obtain the transformation

δgaugeBµν = −2∂[µλ
(1)′

ν] +
2

3

√
6∂[µλ(0)Aν] , (3.1)

which is non-Abelian and local. A similar phenomenon was observed in [21], where the

non-Abelian gauge algebra was interpreted in terms of raising operators. In our case these

8The same absence was noted by [35] in the context of a one-dimensional σ-model based on overextended

G2. There it was interpreted as predicting the absence of R2 higher-order corrections, which however do

occur for this supergravity. This paradox may be resolved by the observation of [36, 37] that higher-order

corrections correspond to weights instead of roots of the overextended algebra.
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are the gauge transformation 1 of the vector, and we sketchily have

[1,1] = 2 , (3.2)

where 2 is the gauge transformation of the tensor. Hence the vector can be interpreted

as the raising operator 1, in agreement with the fact that the node outside of the gravity

line is at the outer right position in the extended Dynkin diagram, and all other gauge

transformations can be generated by considering multiple commutators of it. For instance,

the double commutator [[1,1],1] should give rise to the gauge transformation of the dual

graviton, see also [38]. From this point of view it also follows that the multiple commutators

of the singlet 1 can not give rise to the gauge transformations of the triplets of higher-rank

forms.

4. Discussion

In this note we have compared the possibilities to realise the N = 2, d = 5 supersymmetry

algebra on higher-rank tensors with the predictions of very extended G2. Our main results

are the inclusion of triplets of three- and four-forms in the supersymmetry algebra, nec-

essary for the gauging of the U(1), and the failure of very extended G2 to capture these

forms.

The absence of the four-forms in very extended G2 is in contrast to the previously

considered case of E11 and gaugings of maximal supergravities, where the very extended

algebra contains (d − 1)-forms corresponding to the possible gauge coupling constants

or mass parameters. A caveat here is that there are more deformations allowed for by

supersymmetry which are not captured by E11, that correspond to the gauging of the

’trombone’ or scale symmetry of the field equations and Bianchi identities [39 – 41]. These

are not symmetries of the Lagrangian, and indeed their gauging leads to field equations

that cannot be derived from an action principle. In addition, these symmetries are expected

to be broken by higher-order corrections. The situation considered here is therefore of a

different nature: gauging the U(1) leads to a perfectly bonafide gauged supergravity with

an action principle. It does differ from gauged maximal supergravity in that its original

bosonic fields are invariant under the symmetry that is gauged, while the gauge groups of

maximal supergravity do act on the original bosonic sector [30].

The absence of the U(1) gauging is all the more striking from the following point

of view. The N = 2 gauged supergravity can be obtained as a truncation of N = 8

supergravity with an SO(6) gauging [42], which is included in E11. The gauge coupling

constant survives the truncation from N = 8 to minimal N = 2 pure supergravity. From the

very extended algebras point of view, E11 can be truncated to very extended G2. This works

flawlessly for the propagating degrees of freedom, but the gauge coupling constant is lost in

the process. This suggests that there is a different truncation of E11, which contains both

G+++
2 and the SU(2) triplets of three- and four-forms generators, and therefore accounts

for both propagating and non-propagating degrees of freedom. It would be interesting to

uncover whether such an algebra exists and what its structure is.
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In this note we have presented an example with eight supercharges and the non-simply

laced G+++
2 , where the very extended algebra does not capture the possible gauging of the

supergravity theory. Note that this is even without including any matter multiplets, which

is an additional option in less than maximal supergravity. It will be very interesting to

extend this analysis to other cases, with other supergravities and very extended algebras,

and to investigate what the requirements or reasons are for the non-propagating degrees

of freedom to be present or absent in the very extended algebras. In the latter case, one

could also look for possible extensions of these algebras that do contain all non-propagating

degrees of freedom, similar to a possible truncation of E11 that extends G+++
2 with the

triplets of generators.

We have also observed that in the gauged case the supersymmetry algebra does not

preserve the level structure. That is, the commutator of supersymmetry on a form can

receive gauge contributions from a higher-rank form, in our case B and Cij. For this

reason it is not always possible to only include fields up to a certain level l. One may

expect this to be a general phenomena that will also occur for level decompositions in

other theories.
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